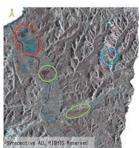
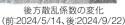
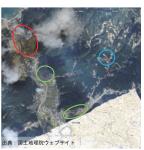
小型SAR衛星StriXを用いた能登半島被災地に おける地表面変状の検出

Detection of surface deformation in the Noto Peninsula disaster area using the small SAR satellite StriX

石田 純平 丹羽 廣海 石丸 元気


Jumpei ISHIDA, Hiroumi NIWA, Genki ISHIMARU





航空写真正射画像 024/4/5~2024/4/26撮影)

航空写真正射画像 (2024/9/24撮影)

後方散乱差分解析の結果と航空写真正射画像との比較

概要》

本研究では、令和6年奥能登豪雨により甚大な被害を受けた石川県輪島市町野町の町野川水系を対象に、民間企業が開発・運用する小型SAR衛星StriXのXバンドデータを用いた二時期後方散乱差分解析を実施した。豪雨前後のSARデータを解析し、平野部においては農地の利用変化や土石流による冠水に起因する反射強度の増減を確認した。さらに、斜面部では豪雨前後のUAVレーザー測量から作成した地形図を用いて抽出した234箇所の崩壊地のうち、代表的な4箇所に着目し、解析の有効性を詳細に検討した。特に、相対方位角・局所入射角といった地形量に加え、NDVI・VARIといった植生指標を活用し、SAR解析に適さない条件を抽出するスクリーニング手法の適用性を検証した。その結果、各指標による除外範囲の設定が解析の信頼性を高める上で有効であることが示され、小型SAR衛星による災害初動対応の高度化に資する知見を得た。

This study investigated surface deformation in the Machino River basin of Machino Town, Wajima City, Ishikawa Prefecture, which sustained severe damage during the 2024 Noto Peninsula heavy rainfall event. A two-temporal backscatter difference analysis was conducted using X-band SAR data acquired by the small SAR satellite *StriX*, developed and operated by a private company.

In lowland areas, variations in backscatter intensity were detected, reflecting changes in land use, such as agricultural activity and inundation caused by debris flows. In mountainous regions, 234 slope failures were identified using pre- and post-event UAV-based LiDAR-derived terrain data. Four representative sites were examined in detail to verify the applicability of the analysis.

The study further assessed screening techniques that incorporated terrain parameters (relative azimuth and local incidence angle) and vegetation indices (NDVI and VARI) to exclude areas unsuitable for SAR-based analysis. The results demonstrated that applying such exclusion criteria improved the reliability of detection. These findings provide evidence that small SAR satellites can enhance the accuracy and efficiency of rapid damage assessment during the early stages of disaster response.