組立筋の一部を通し配筋にしたアンボンドPCaPC柱の構造性能と履歴性状 に関する実験的研究

 朱 盈
 大庭 正俊

 佐々木 仁

概 要

アンボンドプレキャストプレストレストコンクリート(以下アンボンドPCaPC)圧着工法は、シース管内にグラウト注入をしない工法 で、プレストレストカによるひび割れ制御や残留変形がほとんどない高い原点指向性といった構造性能とプレキャスト部材を建 設現場で圧着接合してフレームを構築するため工期短縮、生産性が向上するといった特徴を有している。この工法を柱に適用 する場合の崩壊防止対策として、柱の組立筋の一部を通し配筋にすることを考案した(以下アンボンドPRC柱)。その通し配筋が 柱の構造性能と曲げ性状にどう影響するかを実験によって確認し、また、筆者らが2017年度に行った通し配筋にしていないアン ボンドPCaPC柱の実験結果と比較することにより、地震後の残留変形および履歴性状への影響を確認した。

Experimental Study on Structural Performance and Hysteretic Properties of Unbonded PCaPC Columns with Partial Reinforcing Bars Changed to Through-Bars

Abstract

Unbonded precast prestressed concrete has the following features: it does not inject grout into the sheath tube; it has structural performance such as high criterion crack control by prestressed force and high origin directivity with little residual deformation; it is assembled in the factory and at the construction site. Construction time will be shortened and productivity will be improved. As a measure to prevent collapse when applying this construction method to columns, we devised an arrangement making part of the reinforcing bars of the column to be through-bars (hereinafter "unbonded PRC column"). This experiment was conducted to confirm how the through-bar arrangement affects the structural performance and bending properties of the column. By comparing the experimental results of unbonded PCaPC columns without through-bar arrangement conducted by the authors in 2017, we confirmed residual deformation after an earthquake and the effect on hysteretic properties.

キーワード: アンボンドプレストレスト, 圧着柱 履歴性状, 残留変形

§1. はじめに

平成19年告示改正で主要構造部へのアンボンド工法 の使用が条件付きで認められた。その条件は、付着が良 好な鉄筋または緊張材との併用、あるいは、万一緊張材 が破断し、または定着具の機能が失われた場合にも崩壊 を防止するための措置を講じることである。柱をアンボンド プレキャストプレストレストコンクリート(以下、PCaPC)とした 場合の対策として、柱の組立筋の一部を通し配筋にする ことにより崩壊防止が図られると考えた。通し配筋が曲げ 性状に影響するかを、筆者らが2017年度に行った通し配 筋にしていないアンボンド PCaPC 柱の実験結果 ¹¹と比較 することにより、地震後の残留変形および履歴性状への 影響を確認した。

§2. 実験概要

2.1 実験概要

試験体一覧を表1に示す。実験パラメータは、軸力比と引 張鉄筋比である。コンクリート強度は、30~50Fの超高層建 物を想定し、Fc=80N/mm²とした。軸力比は0.15と0.25の2 種類とした。

試験体形状を図1に、載荷方法を図2に示す。超高層建物の下層階を想定した1/3縮尺で、試験体部は断面が350×350mmで内法長さ2100mm(M/QD=3)の柱とした。スタブ断面は、900×600mmとし、柱頭部を一体打設し、柱脚部は試験体部とスタブ部分を別々に打設した後、25mm厚の高強度無収縮モルタルを介して両者をプレストレスにより圧着接合した。せん断補強筋はS10(KSS785)の高強度せん断補強筋を使用し50mm間隔(pw=1.63%)で配筋した。PC鋼材は ϕ 17PC鋼棒(C種1号)を4本、定着端間の距離は7300mmとした。シース管の内径は30mm(外径34mm)とし、シース管による断面欠損は全断面積に対して2.31%である。目標導入プレストレスカのPC鋼棒規格降伏耐力に対する比率は0.68とした。

組立筋を通し配筋と設計する場合、引張鉄筋比は「PC性 能評価型設計施工指針」²⁾の修復限界Ⅱ(残留変形 1/200 以下)および「PRC基準Ⅲ種PC」³⁾の引張鉄筋比p(式(1))に 準拠して定める。

$$p_t \ge \left(0.4 - 2.0 \frac{\sigma_e}{F_c}\right) \cdot \frac{1}{100} \tag{1}$$

ここで、 $p_t = a_t/bd$, a_t : 引張鉄筋断面積, b: 長方形 断面としたときの部材断面の幅, d: 圧縮縁から引張鉄筋 断面重心までの距離, σ_e : 有効プレストレス力/コンクリー ト全断面積, F_c : コンクリートの設計基準強度である。

表1 試験体一覧

試験体名		CR80	CR80	CR80	
		-015a	-025a	-025b	
ţ	嗝b×せいD(mm)	350 × 350			
コンク	リート強度Fc(N/mm2)	80			
	せん断スパン比	3			
	PC鋼棒本数・径	4- <i>ф</i> 17			
引張	鉄筋比(引張鉄筋)	0.32% (2-D16) 0.47% (2-D19)			
	有効プレストレスト力(kN)	687	671	686	
	初期軸圧縮力(kN)	1658	2669	2738	
実験時	軸応力 σ_{g} (N/mm ²)	13.53	21.79	22.35	
	コンクリート強度	00.2	87.1	88.7	
	$\sigma_{\rm B}({\rm N/mm^2})$	09.3			
	軸力比σg/σB	0.152	0.250	0.252	

図1 試験体配筋図

図2 載荷装置図

本実験では、式(1)より引張鉄筋比が0.29%以上となり、また、残留変形の基準を考慮し、試験区間の通し配筋はD16 (SD345)およびD19 (SD345)の異形普通強度鉄筋とし、引張鉄筋比0.32%と0.47%と設定した。

試験体に用いた各種材料の試験結果を表2および表3に 示す。コンクリートは、縮小試験体のため、最大骨材径13mm の粗骨材を用いた超高強度コンクリートとした。各使用材料 に用いた材料試験はJIS規格に基づいて行った。

載荷方法は、試験体の両端にジャッキで一定軸力を加え ながら、逆対称加力を正負交番繰返しで行った。載荷はス タブ間で計測した柱部材角(Rc)で制御し、Rcが1/800で1 回,1/400,1/200,1/133,1/100,1/66.7,1/50,1/33, 1/25で、それぞれ正負各2回、1/16.7で1回の交番載荷を 行った。

2.2 実験結果と考察

最大耐力時と最終加力時のひび割れ状況を図3に示 す。各試験体の初曲げひび割れ点、最大せん断力を含め たせん断力-部材角関係を図4に示す。点線で示している のはPΔ効果による付加せん断力である。

(1)軸力比0.15の試験体

軸力比0.15の試験体CR80-015aは、柱のせん断力 137kN(Rc 0.13%)時に試験体に曲げひび割れが発生した。 ひび割れ発生本数が増えた後、最大せん断力283kN(Rc 1.19%)に達した。最大せん断力に達した後、試験体端部に 縦ひび割れが発生した。

(2)軸力比0.25の試験体

軸力比0.25の試験体CR80-025aおよびCR80-025bはせん断力233kN (Rc 0.24%)および223kN(Rc0.23%)時に試験体に曲げひび割れが発生した。曲げひび割れ発生本数が増えた後、最大せん断力384kNおよび396kN(Rc 0.95%および1%時)に達した。最大せん断力に達した後、かぶりコンクリートの付着破壊による縦ひび割れが発生した。最終加力時の縦ひび割れ本数は軸力比0.15の試験体より多かった。なお、引張鉄筋比の違いによる履歴性状の差はあまり見られなかった。

§3. 耐力の実験値と計算値の比較

3.1 耐力の計算式

曲げひび割れ耐力の計算値は2015年版建築物の構造 関係技術基準解説書⁴⁾の (付1.3-1)式にプレストレス力を考 慮して修正した式で求める。

$$M_c = 0.56\sqrt{\sigma_B}Z + \frac{(N+Pe) \cdot D}{6}$$
(2)

ここで、 σ_B :コンクリート強度, Z:断面係数, N:軸力, P_e : 有効プレストレス力, D:部材せいである。

表2 コンクリート等の力学的性質

社約々	計験仕々	圧縮強度	圧縮強度時歪	ヤング係数	ポマンハンド
初杆石	武殿144 石	(N/mm ²)	(%)	(N/mm ²)	小ノノノに
	CR80-	893	0.261	42520	0 1 9 8
	015a	05.5	0.201	42320	0.150
コンクリート	CR80-	871	0.264	41860	0.210
	025a	07.1			0.219
	CR80-	88.7	0.273	/1730	0 1 9 5
	025b	00.7	0.275	41750	0.195
	CR80-	1/5 0	0.444	10057	0.244
	015a	145.5	0.444	40957	0.244
日地工业友业	CR80-	14E C	0.455	10722	0.217
日地ビルメル	025a	145.0	0.455	40722	0.217
	CR80-	1/7 0	0.457	10159	0.200
	0256	141.0	0.407	40100	0.209

表3 鉄筋等の力学的性質

++ *1 47	鋼材種	降伏強度	引張強さ	ヤング係数	
机杆石		(N/mm ²)	(N/mm^2)	(N/mm^2)	
普通強度鉄筋	D16	399.4	585.0	194800	
(SD345)	D19	378.6	568.3	194600	
高強度せん断補強筋	S10	937 1*	1120.1	178100	
(KSS785)	010	501.1		1,0100	
PC鋼棒	<i>ф</i> 17	120/ 1*	1207.6	102200	
(C種1号)	ψ 17	1204.1	1237.0	130000	

※0.2%オフセット法による

△初曲げひび割れ ●最大せん断力

図4 せん断力-部材角関係

また、ACI規準応力ブロックを用いてコンクリート圧縮合 力を計算すると、普通強度鉄筋の存在を無視すれば、非常 に簡略な式でアンボンドPCaPC柱の曲げ終局耐力を算定 することできる。この方法で求められたアンボンドPCaPC柱 の曲げ終局耐力(2項)に組立筋の寄与分(1項)を付加し、(3) 式のようにアンボンドPRC柱の曲げ耐力式を作成した。

 $0 \le N \le 0.4 \cdot b \cdot D \cdot F_c$ のとき

$$M_u = 0.8a_t \cdot \sigma_y \cdot D + 0.5 \cdot (N + Pe) \cdot D \left(1 - \frac{N + Pe}{0.85b \cdot D \cdot F_c}\right) (3)$$

$$_{cal}Q_u = 2M_u/L \tag{4}$$

ここで、N:軸力, P_e :有効プレストレス力, b:部材幅, D: 部材せい, a_t :引張鉄筋の断面積, σ_y :引張鉄筋の降伏強 度, F_c :コンクリート強度, L:クリアスパンである。

3.2 初期剛性の計算式

アンボンド部材が逆対称曲げを受ける場合は、離間が発生するまではPC鋼材にひずみ増分は発生しないので、PC 鋼材の剛性は考慮しない。また、シース管内にグラウトが充填されていないため、シース管によるコンクリートの断面欠損を考慮する。曲げ弾性剛性*Ke*kおよびせん断弾性剛性*Kes*は、それぞれ次式で与えられている。

$$K_{e.f} = 12E_c \cdot I_e / L^2 \tag{5}$$

$$K_{e.s} = G \cdot b \cdot D \tag{6}$$

ここで、 E_c :コンクリートの弾性係数、 I_e :シース管断面欠 損を考慮した等価有効断面2次モーメント、G:せん断弾性 係数 $\left(=\frac{E_c}{2(1+\nu)}\right)$ 、 ν :ポアソン比(=1/6)、D:柱せいである。 したがって、初期剛性Kは次式で計算することができる。

$$K_{e} = \frac{K_{e.f} \cdot K_{e.s}}{K_{e.f} + K_{e.s}} = \frac{1}{\frac{L^{2}}{12E_{c} \cdot I_{e}} + \frac{1}{G \cdot b \cdot D}}$$
(7)

3.3 実験値と計算値の比較

曲げひび割れ耐力の実験値は初曲げひび割れ時のせん断力から下式によって換算する。

$$_{exp}M_c = _{exp}Q_c \cdot L/2 \tag{8}$$

ここで、 $_{exp}Q_c$:初曲げひび割れ時のせん断力, L: クリアスパン(2100mm)である。

初期剛性の計算値は(7)式により計算し、実験値は初曲 げひび割れ時せん断力と変形角の比とした。表4と表5に各 試験体の初期剛性、曲げひび割れ耐力および最大せん断 力を含めた特性値の実験値および計算値を示す。図4に最 大せん断力の実験値および略算式(3)による計算値との比 較を示す。図中、計算値はPΔ効果の影響を考慮し、低減

表4 特性値(実験値)

試験体名	初期剛性 (kN/rad) Ke×10³	初曲げひび割れ時 (kN・m) _{exp} M _c	最大せん断力時 (kN) _{exp} Q _u
CP80 0150	102	144	283
CI\80-013a	98	-137	-286
CP90 0250	97	245	384
CR00-025a	92	224	-374
CP90 0256	97	234	396
0100-0200	99	-189	-390

表5 特性値(計算値)

試験体名	初期剛性 (kN/rad) Ke×10 ³	初曲げひび割れ時 (kN・m) _{cal} M _c	最大せん断力時 (kN) _{cal} Q _u	最大せん断力 (PΔ効果考慮)
CR80-015a	134	135	262	252
CR80-025a	132	194	350	338
CR80-025b	132	197	372	359

図6 最大せん断力の $_{exp}Q_u/_{cal}Q_u$

をかけた。図5~6に試験体3体の曲げひび割れ耐力の実 験値/計算値および最大せん断力の実験値/計算値を示 す。 曲げひび割れ耐力の実験値はほぼ計算値と整合した。 最大せん断力の実験値/計算値も3体とも1以上となり、全体 的に精度よく評価できた。初期剛性については、計算値の 方がやや上回った。

§4. 通し配筋の履歴性状への影響

4.1 包絡曲線の比較

図7に既報¹⁾および本実験で得られた、包絡曲線の結果 を示す。図8に本実験における3試験体の包絡曲線の比較 を示す。

本実験の試験体は組立筋を一部通し配筋としたことに対 して、既報¹⁰の試験体は通し配筋としていない。各試験体 は、コンクリート強度に関しては既報¹⁰の試験体の方がやや 高いものの、軸力比と断面せいは共通であり、組立筋の通 し配筋の有無のみが異なる。

包絡曲線については、通し配筋にしていない既報¹⁰の試 験体の結果とほぼ同様な傾向が見られた。初期剛性につ いては、通し配筋有無に関係なく、ほぼ同様な結果となっ た。最大耐力については、コンクリート強度が既報¹⁰の試験 体よりやや小さいものの、通し配筋にした本実験の試験体 が上回る結果となった。これは、通し配筋が各試験体の耐 力に寄与したものと考えられる。最大耐力経過後の耐力低 下は通し配筋量によって、低減度合いがやや異なるが、既 報¹¹とほぼ同様な傾向が見られた。通し配筋のスケルトンカ ーブへの影響が小さかった。また、軸力比の大きい試験体 ほど、最大耐力以降のせん断力が低下した。引張鉄筋比の 違いによる耐力への影響はあまり見られなかった。

4.2 残留変形の比較

図9に既報¹¹の柱実験の残留変形と本実験の結果との比較を、図10に本実験における3試験体の残留変形の比較を示す。

部材角1/100までの残留変形はほぼ発生せず、傾向とし ては既報¹¹の結果とほぼ同様であった。なお、部材角が大き くなると、通し配筋がある試験体で残留変形量が拡大する 傾向が見られた。また、軸力比が大きいほど、残留変形が 大きくなるが、引張鉄筋比の違いによる残留変形への影響 はあまり見られなかった。引張鉄筋比0.32%と0.47%の試 験体の残留変形の傾向はほぼ同様であった。

図8 軸力比および引張鉄筋比による包絡曲線の比較

最大経験部材角 (±1/100まで)

(b)引張鉄筋比の影響

図10 軸力比および引張鉄筋比による残留変形の比較

ひとこと

アンボンドPC柱・壁柱と制振部 材を超高層建物のコア部分に設 けることで、大地震時にも構造部 材の損傷が少ない安全安心な建 物を供給することを図る。これま での実験結果と設計法をまとめ、 実用化に向けて開発を進めてい きたい。

§5. まとめ

15

10

0

-5

(mm) 5

> 軸力比、引張鉄筋比を実験パラメータとして計3体のアン ボンドPRC圧着柱に対して、逆対称曲げを与える実験を行 い、既報1の柱実験で得られた結果との比較を行った。通し 配筋の履歴性状と耐力への影響は小さく、通し配筋ありの 場合でも、残留変形は1/200以下であることを確認した。

参考文献

- 大庭正俊他:アンボンドプレキャストプレストレストコンクリート柱の構造性 1) 能に関する実験的研究、フジタ技術研究報告(所報)第54号,2018
- 日本建築学会:プレストレストコンクリート造建築物の性能評価型設計施工 2) 指針(案)・同解説
- 日本建築学会:プレストレスト鉄筋コンクリート(Ⅲ種 PC)構造設計・施工指 3) 針•同解説
- 4) 国土技術政策総合研究所他:2015年版建築物の構造関係技術基準解説 書,2015