外装タイル剥離診断装置の設計・試作および位置認識システムの開発

添田智美 藤沼智洋千葉拓史

概 要

打撃応答音を利用した高精度、高効率でかつ汎用的に利用できるタイル剥離診断装置を開発することを目的として検討を行ってきており、打撃応答音波形の第一波最大振幅値により剥離判定が可能であるとの知見を得ている。本報では、実用性および安定性を保持するために剥離診断装置が満たすべき要件について検討した結果、打撃力を測定可能で4つのマイクを有する剥離診断装置を設計・試作した。次に、この装置を較正するための標準試験体を考案し、較正方法を確立した。さらに、安定して剥離判定ができるパラメータの算出方法を提案し、そのパラメータを用いて4つのマイクの有効性について検証した。

一方、剥離判定結果の記録および図面化を効率よく実施するためには、剥離判定位置を自動的に認識できるシステムが望ま れる。そこで、外部トリガカメラと AR マーカーを利用した画像認識による位置認識システムを構築した。本システムは、壁面に取 り付けられた AR マーカーと剥離診断装置に取付けられた AR マーカーをカメラで認識して位置情報を得るシステムであり、タイ ル剥離診断における打撃をトリガとして、打撃と同時に得られた剥離判定結果と位置情報とを同期させるものである。本システム により、10Hz までの打撃周波数にも対応した剥離判定および位置認識が可能であり、タイル剥離診断にとって十分な位置認識 精度も得られることを確認した。

Design and Prototyping of a Tile-Debonding Diagnostic Device and Development of a Diagnostic Position Recognition System

Abstract

This paper details the development of a tile-debonding diagnostic device that can perform practical and reliable inspection of debonding using first-wave maximum amplitude of impact sound for diagnosing. The prototyped device has an impact force sensor for calibrating varying impact force and has four microphones for the purpose of reliable detection in the vicinity of the debonding boundary. For calibration of the device, a standard test specimen was devised and through experiments on the specimen, an appropriate parameter was set and the effectiveness of locating four microphones was verified.

In addition, to perform the recording and drawing of results efficiently, it is desirable to have a system that can automatically recognize the diagnostic position. Therefore, a diagnostic position recognition system using an external trigger camera and AR markers was built. In this system, the camera is pointed toward the surface to be inspected. Four AR markers are attached to the surface within the camera's field of view, and another AR marker is attached to the diagnostic device which has the impact force sensor. At the same time as the device strikes the surface, the system instantaneously recognizes images with trigger signals from the impact sensor and synchronizes the diagnostic results with the position information. It was confirmed that this system could diagnose debonding and position recognition at an impact frequency of up to 10 Hz, and that position recognition accuracy is sufficient for detection of tile debonding.

キーワード: タイル、剥離診断装置、打撃応答音、 複数マイク、位置認識、ARマーカー

§1. はじめに

外装タイル張り仕上げは、剥落事故が生じると第三者に 危害を及ぼす危険性があるため、剥離の有無を精度よく診 断し、剥離がある場合には剥落を未然に防ぐ措置をとる必 要がある。筆者らは、打撃応答音を利用した高精度、高効 率でかつ汎用的に利用できるタイル剥離診断装置を開発 することを目的として検討を行っている。これまで、試作した 打撃装置および打撃応答音収録機構を用いて、打撃応答 音波形の第一波最大振幅値による剥離判定の可能性を示 した^{1),2)}。本報では、より実用的で安定した剥離判定を可能 とするために、これまでの成果に新たな構想を加え、剥離 診断装置を設計・試作した結果を示すとともに、剥離診断 装置の較正手法、剥離判定パラメータの算出方法、装置の 有効性について実験的に検討した結果について報告する。

また、タイルの剥離診断結果の記録および図面化作業 は、多大な労力がかかるため、剥離診断技術の開発と併せ、 診断結果の自動図面化に関連する技術開発のニーズ³⁾も 高まっている。そこで、剥離診断装置の開発と併せ、外部ト リガカメラと AR マーカーを利用した位置認識システムを構 築した。本報では、位置認識システムの概要を述べるととも に、位置認識精度を検証した結果を報告する。

§2. タイル剥離診断装置の構想および設計・試作

2.1 剥離診断装置の基本構想

設計・試作するタイル剥離診断装置の詳細な仕様を決定 する前段階として、既報 ^{1),2)}の成果に新たな構想を加え、表 1 のとおり具備すべき要件と基本構想について整理した。 概要は以下のとおりである。

(1)打撃機構

安定した高速連続打撃を目的として、既報 1)22と同様にソ レノイドアクチュエータを採用する方針とした。ソレノイドアク チュエータは、構造がシンプルで高速連続動作が可能であ り、動作が静かといった特徴があり、打撃ストロークが一定 の場合には、安定した打撃力を得ることができる。

(2)打擊力測定機構

凹凸のあるタイル壁面の検査において装置を走査させる ことを想定した場合、装置が傾いたり壁面から離れたりする ことにより打撃ストロークにばらつきが生じ、それゆえ打撃力 が変動することが考えられる。そこで、打撃力を測定し、打 撃力により打撃応答音を補正する方針とした。

(3)打擊応答音収録方針

既報 1).2)では、打撃応答音波形の第一波最大振幅値によ り剥離判定が可能であることを示した。本研究でも同様に第 一波最大振幅値に着目することとし、連続打撃時には打撃 応答音波形の初期波形のみを収録する機構とする方針とした。ただし、連続打撃しない場合には、実験的に長い区間の波形の収録も可能な機構とすることとした。

(4)マイクの配置方針

既報 ^{1),2)}では、打撃機構を有する筒状の筐体の外部、か つ、検査対象面近傍にマイクを配置して打撃応答音を収録 した。この配置では、打撃機構内の反響音などがマイク出 力に及ぼす影響が小さいと考え、本研究においても同様の 方針でマイクを配置することとした。

ここで、打撃位置とマイク位置の関係について考慮した。 打撃位置、マイク位置および剥離境界における模式図を図 1 に示す。打撃位置が剥離部でマイクが健全部上と剥離部 上とで異なる場合(③④)や、マイクが剥離部上で打撃位置 が剥離部と健全部とで異なる場合(②④)などが想定される。 これらの状況の違いが打撃応答音波形に影響を及ぼすと 考え、打撃点を中心として 4 方向対称な位置にマイクを配 置する構想を立てた。

2.2 剥離診断装置の設計・試作

装置の概要を図 2 および写真 1 に示す。最大打撃周波 数 10Hz でストローク 10mm のソレノイドアクチュエータを 使用し、先端に直径 6mmのステンレス鋼製打撃ヘッドを取 り付けた。打撃力センサとして圧電素子を搭載し、打撃力に

表1 剥離診断装置の基本構想		
項目	要件	設計方針
打撃機構	・安定した高速連続打撃	・ソレノイドアクチュエータ
	・凹凸のあるタイル壁面	・十分なストローク
	への対応	
打擊力測定	・凹凸面操作時の打撃ス	・打撃力測定機構として圧
機構	トロークのばらつき、打撃	電素子取り付け
	力変動を補正	
打擊応答音	・タイル張り層の剥離検知	・打撃応答音波形の第一波
収録機構	・シンプルな判定	最大振幅値
マイクの配	・打撃反響音などの影響	・筒状筐体外部の検査対象
置方針	回避	面近傍にマイク配置
	・打撃位置とマイク位置お	・打撃点を中心として4方向
	よび剥離部と健全部の関	均等にマイクを配置
	係を考慮	

図1 打撃位置と打撃応答音収録位置の関係

60

よる打撃応答音の補正を可能となるようにした。ソレノイドの 駆動電圧は 3.5V~8V で可変としたが、本報では 5V に設 定した。また、小型・軽量で十分な周波数特性を持つコン デンサマイクを使用し、打撃点を中心に 4 方向均等となるよ う 4 個取り付け、打撃点からマイク中心までの水平距離は 40mm とした。サンプリング周波数は、打撃力および打撃 応答音の波形を適切に収録できるように、200kHz とした。

§3. 装置の較正および剥離判定パラメータ

3.1 装置較正用標準試験体の作製

打撃力および 4 つのマイクの振幅値を較正するための標 準試験体として、図 3 および写真 2 に示す試験体 Q_{160} を 作製した。 Q_{160} は ϕ 300mm、厚 60mm の石英ガラス製試 験体で、裏面中央部には ϕ 160mm、深さ 50mm の空洞を 設けて、表面に厚 10mm の試験面を残存させたものである。

3.2 試験体測定条件の設定

試験体の打撃箇所は、4 つのマイクに対して均等な打撃 応答音が入力されると想定される試験体中央部とした。ここ で、2 章でも述べたように、剥離診断装置が傾いたり壁面か ら離れたりする状況として、表 2 に示すように装置底板と試 験面との間に種々の隙間が生じた場合を想定した測定条 件を設定した。Case「n1s1」とは、装置底板と試験体表面間 の隙間が、N 方向 1mm、S 方向 1mm であることを表す。 この条件を満たすために、隙間が 0mm 以外の場合には、 写真 3 に示すとおり、所定の厚みのスペーサーを装置底板 の四隅に挿入して測定を行った。

3.3 装置の較正および剥離判定パラメータの設定

マイクの向きは、N、E、S、Wのすべての方向に向けて行い、同一測定条件・方向における測定回数は各2回とした。

標準試験体 Q₁₆₀の中心部を駆動電圧 5V で打撃した際の打撃力波形および打撃応答音波形を図 4 に示す。図 4 より、4 つのマイクの打撃応答音波形は、位相および減衰の傾向がほぼ同等であり、振幅も増幅加減による誤差はあるものの、近似していることがわかる。

本研究では、収録波形からの測定パラメータおよび剥離 判定パラメータを次のとおりとした。

図 4(b)に示すように最大打撃力を F、打撃応答音の第一 波最大振幅を A と定義し、収録波形からの測定パラメータ として設定した。また、標準試験体 Q₁₆₀ 中央を均等隙間状 態 1mm(n1s1)で測定した場合の F および A を較正のた めの標準値 F₀および A₀とし、駆動電圧およびマイクごとに 設定した。検査対象における F および A を標準値 F₀およ び A₀を用いて式(1)および式(2)のとおり較正し、相対打撃 力 F_rおよび相対最大振幅 A_rを算定することとした。

図4 Q₁₆₀ 中心部における打撃力および打撃応答音波形

•••(3)

 R_{AF}

$$F_{I}=F/F_{0} \qquad \cdots (1)$$

$$A_{J}=A/A_{0} \qquad \cdots (2)$$

さらに、判定パラメータとして、式(3)のとおり相対振 幅評価値 RAFを定義した。

 $R_{AF} = (A_r)^{i}/(F_r)^{j}$

ここで、変数 i および j の値として、試行的に 式(4)および式(5)の2 つの場合について、相対振 幅評価値 RAFと相対打撃力 Fr との関係を比較検 討した。

(Case 1) $R_{AF} = A_r/F_r$ (i=1, j=1) ···(4) (Case 2) $R_{AF} = A_r / \sqrt{F_r}$ (i=1, j=1/2) ...(5)

Case 1 の場合の R_{AF} と F_r の関係を図5に、Case 2の場合の R_{AF} と F_r の関係を図6に示す。図5お よび図6より、隙間状態にあるマイク間では良好な相関 関係があり、密着状態および片側密着状態にあるマイク は相関関係から外れることがわかる。また、隙間厚が大 きくなるとアクチュエータのストロークも増すため、相 対打撃力 Frが増大することがわかる。さらに、図5の Case 1 では、 F_r の増加に対して R_{AF} は減少傾向にある のに対し、図6の Case 2 では、 F_r の増加に対して R_{AF} はほぼ一定であることがわかる。剥離判定パラメータは、 隙間条件により打撃力が変動した場合でも、変動せずに 安定していることが望ましいため、本研究で試作した剥 離診断装置においては、Case 2 の場合の R_{AF} の方が、 剥離判定パラメータとして適していると考える。

§4. 複数マイクの有効性の検証

マイクを 4 つ取り付けたことの有効性を検証するため、試 験体Q₁₆₀表面の中心線(N-S線)上を、10mm間隔で計21 点を打撃した際の R_{AF} を測定した。中心からN方向の R_{AF} の測定結果を図7に示す。RAFの測定値は、各マイクの位 置を中心とした円で示しており、円が大きいほど RAF が大き いことを表す。円の直径は、試験体中央を打撃したときの RAF を基準とした相対値である。

図7より、空洞範囲外を打撃した場合(N10、N09)、いず れのマイク位置においても RAF は非常に小さい。空洞部の 境界近傍の内側を打撃した場合(N07、N06)、空洞部の中 心側のマイクの RAF が大きくなるのに対し、空洞境界の外 側のマイクの RAF は非常に小さい。空洞範囲内を打撃した 場合(N07~NS0)、R_{AF} が最も大きく測定されるのは、空 洞中心に最も近い位置にあるマイクである。

RAF と打撃点との関係を図8に示す。図の横軸は打撃点 のN-S方向の座標で、縦軸は打撃位置でのRAFの値であ り、打撃点の座標に集約して4つのマイクのRAFを示した。

図8より、N側とS側とでマイクの個体差がなく対称の結果 を示している。空洞範囲外を打撃した場合、マイクが空洞範 囲内であっても *R*_{AF} が非常に小さい。*R*_{AF} の最大値は打 撃点が空洞中心から20mm離れた位置で、マイクが中心を 挟んで打撃点の反対側にある場合である。

以上のとおり、R_{AF}は打撃点だけではなくマイク直下の状態の影響を受ける。検出漏れのない安定した剥離判定結果 を得るためには、剥離部を打撃した際に少なくとも1つのマ イクが剥離範囲に入るよう、打撃点を中心にして4方向均等 にマイクを配置することが有効であるといえる。

§5. 外部トリガカメラと AR マーカーを用いた診断 位置認識システム

5.1 位置認識システムの概要

本システムの基本構成を図 9 に示す。タイル剥離診断装 置、打診結果の解析を行うマイコン、打診位置を撮像する 外部トリガカメラおよびパソコンで構成されている。

本システムの概要を図 10 に示す。打撃をトリガとしてカメ ラ画像が撮像され、壁面用 AR マーカー(Mw)に対する打 診装置用 AR マーカー(MD)の相対位置を認識し、打診デ ータと同期させることで打撃点の位置情報を得るものである。 視野の幅、高さ、およびワークディスタンス(WD)の比は、 約1:1:1であり、画像処理において、カメラレンズの歪曲収 差の補正、視野の台形補正、WD の差の補正が行われる。

また、打診の判定結果表示機能として、健全と判定した打 撃点を青点、剥離と判定した打撃点を赤点で表示することと した。

5.2 位置認識の精度検証試験

(1)静的条件下での位置認識精度検証

静的検証試験の試験条件を表3に、試験体図を図11に示す。実現場想定の約1/4スケールの試験環境で、四隅に印刷した壁面用マーカー M_W に対し、 M_W 間に印刷した 29か所の装置マーカー M_D の位置認識精度を検証することとした。試験は、装置マーカー M_D の試験体図を、装置高さ想定分(40mm)だけカメラ側に精度よく設置し、測定対象以外の M_D を隠した状態で測定対象の M_D の認識精度を確認する方法で実施した。

試験結果を図12に示す。図中の数値は補正後の位置の 視野に対する誤差割合であり、上段は x 軸の誤差、下段は y 軸の誤差である。また、打撃位置がプロットされた位置認 識画像を図13に示す。視野の周囲ほど外側に膨らむよう に誤差が生じているものの、最大誤差は視野サイズの 0.7%未満であり、タイルの剥離診断においては十分な精 度を有しているものと考える。

(2)動的条件下での位置認識精度検証

動的検証試験の試験条件を表4、試験に用いた模擬剥 離試験体図を図14に示す。表4に示す4種の移動パター ンで動的条件下での位置認識の精度検証を行った。装置 -0.05

-0.04

-0.10

0.21

0.15 -0.05

0.05

-0.14

0.25

-0.04

の打撃周波数は、10 Hzとした。

試験結果を図 15 に示す。青色の点は 健全部と判定された打撃点であり、赤色 の点は剥離と判定された打撃点である。 走査方向や走査速度にかかわらず、高 精度に剥離範囲を特定することが可能 であることがわかる。また、より正確に剥 離範囲を特定するためには、条件 A や D のように走査速度を遅くして走査間隔 を狭めることによって検出密度を高める ことが望ましい。

§6. おわりに

本研究の結論を以下に示す。

- 実用性および安定性を考慮して、4 つ のマイクを有し打撃力の測定が可能な 剥離診断装置を設計・試作した。
- ・装置較正用の標準試験体として、試験体中央裏面に円 形の空洞を有するガラス製試験体 Q160を考案・作製した。
- ・ 打撃力波形および打撃応答音波形から抽出する基本パ ラメータとして、最大打撃力 F および第一波最大振幅 A を定義し、較正方法および適した剥離判定パラメータ RAFの算出方法を提示した。
- ・較正用標準試験体 Q160 を用いた試験により、剥離判定 パラメータ RAF の大きさは、打撃点だけではなくマイク位 置の影響も受けることを確認し、打撃位置を中心にして 4 方向にマイクを配置することの有効性を確認した。
- 診断結果の記録および図面化の自動化を目的として外 部トリガカメラと AR マーカーを用いた診断位置認識シス テムを構築した。
- ・構築した位置認識システムの精度検証を行い、10Hzの 打撃周波数での剥離診断および位置認識が可能で、約 50cm/s の走査速度であってもタイル剥離診断に十分な 位置認識精度を有することを確認した。

謝 辞

本稿は、東京工業大学 環境・社会理工学院 建築学系 三 上貴正研究室との共同研究成果の一部です。ご指導いただい た三上貴正准教授、研究にご協力いただいた研究室学生伊藤 秀太郎氏に謝意を表します。また、装置および位置認識システ ムの開発にご協力を頂いた、株式会社シスミック 岸村雄平氏、 株式会社構造計画研究所相川梓氏に謝意を表します。

参考文献

1) 添田智美,藤沼智洋:外装タイル剥離診断装置の開発に 関する基礎研究,フジタ技術研究報告 第 51 号, pp. 45-

0.30

0.11

図 12 静的位置認識精度検証結果

図 15 動的打撃位置認識画像

50,2015年11月

- 2) 添田智美, 三上貴正: 外装タイル剥離診断装置の開発に 関する基礎研究,日本建築学会構造系論文集,第81巻, 第729号, pp. 1779-1787, 2016年11月
- 3) 平成27、28年度建築基準整備促進事業T1. 湿式外壁等 の定期調査方法の合理化の検討

ひとこと

今後、試作した装置および位置認 識システムを用いて、試験体や実物 件での診断実績を積み重ね、有効性 の検証を行っていきたいと思います。

添田 智美